
ISC
INDIAN SCHOOL CERTIFICATE

EXAMINATION

YEAR 2027

COMPUTER SCIENCE
(868)

February 2025

__

© Copyright, Council for the Indian School Certificate Examinations
All rights reserved. The copyright to this publication and any part thereof solely vests in the Council for the Indian
School Certificate Examinations. This publication and no part thereof may be reproduced, transmitted, distributed or
stored in any manner whatsoever, without the prior written approval of the Council for the Indian School Certificate
Examinations.

Trust and fair play.
Minimum monitoring.
Allowing schools to evolve their own niche.
Catering to the needs of the children.
Giving freedom to experiment with new ideas
and practices.
Diversity and plurality - the basic strength for
evolution of ideas.
Schools to motivate pupils towards the
cultivation of:

Schools to have an 'Indian Ethos', strong roots in
the national psyche and be sensitive to national
aspirations.

ETHOS OF CISCE

 Excellence - The Indian and Global
 experience.

 Values - Spiritual and cultural - to be the bedrock
 of the educational experience.

MISSION STATEMENT

The Council for the Indian School Certificate
Examinations is committed to serving the nation's

children, through high quality educational
endeavours, empowering them to contribute towards

a humane, just and pluralistic society, promoting
introspective living, by creating exciting learning
opportunities, with a commitment to excellence.

Council for the Indian School Certificate Examinations (CISCE)

ISC Examination Year 2027

CLASS XII
There will be two papers in the subject:
Paper I: Theory……….. 3 hours….70 marks
Paper II: Practical…….. 3 hours….30 marks

PAPER I –THEORY – 70 MARKS
SECTION A

1. Boolean Algebra
(a) Propositional logic, well formed formulae,

truth values and interpretation of well formed
formulae (wff), truth tables, satisfiable,
unsatisfiable and valid formulae. Equivalence
laws and their use in simplifying wffs.
Propositional variables; the common logical
connectives (~ (not)(negation), ∧
(and)(conjunction), ∨ (or)(disjunction), ⇒
(implication), ⇔ (biconditional); definition
of a well-formed formula (wff);
`representation of simple word problems as
wff (this can be used for motivation); the
values true and false; interpretation of a wff;
truth tables; satisfiable, unsatisfiable and
valid formulae.
Equivalence laws: commutativity of ∧, ∨;
associativity of ∧, ∨; distributivity; De
Morgan’s laws; law of implication (p ⇒ q ≡
~p ∨ q); law of biconditional ((p ⇔ q) ≡
(p ⇒ q) ∧ (q ⇒ p)); identity (p ≡ p); law of
negation (~ (~p) ≡ p); law of excluded
middle (p ∨~p ≡ true); law of contradiction
(p∧~p ≡ false); tautology and contingency
simplification rules for ∧, ∨. Converse,
inverse and contra positive. Chain rule,
Modus ponens.

(b) Binary valued quantities; basic postulates
of Boolean algebra; operations AND, OR and
NOT; truth tables.

(c) Basic theorems of Boolean algebra
(e.g. duality, idempotence, commutativity,
associativity, distributivity, operations with 0
and 1, complements, absorption, involution);
De Morgan’s theorem and its applications;
reducing Boolean expressions to sum of
products and product of sums forms;
Karnaugh maps (up to four variables).

Verify the laws of Boolean algebra using
truth tables. Inputs, outputs for circuits like
half and full adders, majority circuit etc.,
SOP and POS representation; Maxterms &
Minterms, Canonical and Cardinal
representation, reduction using Karnaugh
maps and Boolean algebra.

2. Computer Hardware

(a) Elementary logic gates (NOT, AND, OR,
NAND, NOR, XOR, XNOR) and their use in
circuits.

(b) Applications of Boolean algebra and logic
gates to half adders, full adders, encoders,
decoders, multiplexers, NAND, NOR as
universal gates.

Show the correspondence between Boolean
methods and the corresponding switching
circuits or gates. Show that NAND and NOR
gates are universal by converting some circuits
to purely NAND or NOR gates.

SECTION B

The programming element in the syllabus (Sections B
and C) is aimed at algorithmic problem solving and
not merely rote learning of Java syntax. The Java
version used should be 5.0 or later. For programming,
the students can use any text editor and the javac and
java programs or any other development
environment: for example, BlueJ, Eclipse, NetBeans
etc. BlueJ is strongly recommended for its simplicity,
ease of use and because it is very well suited for an
‘objects first’ approach.
3. Implementation of algorithms to solve

problems
The students are required to do lab assignments
in the computer lab concurrently with the
lectures. Programming assignments should be
done such that each major topic is covered in at
least one assignment. Assignment problems
should be designed so that they are sufficiently
challenging. Students must do algorithm design,
address correctness issues, implement and
execute the algorithm in Java and debug where
necessary. Self explanatory.

7

ISC Examination Year 2027

4. Programming in Java (Review of Class XI
Sections B and C)
Note that items 4 to 13 should be introduced
almost simultaneously along with classes and
their definitions.
While reviewing, ensure that new higher order
problems are solved using these constructs.

5. Objects
(a) Objects as data (attributes) + behaviour

(methods); object as an instance of a class.
Constructors.

(b) Analysis of some real-world programming
examples in terms of objects and classes.

(c) Basic input/output using Scanner and Printer
classes from JDK; input/output exceptions.
Tokens in an input stream, concept of
whitespace, extracting tokens from an input
stream (String Tokenizer class).

6. Primitive values, Wrapper classes, Types and
casting
Primitive values and types: byte, int, short, long,
float, double, boolean, char. Corresponding
wrapper classes for each primitive type. Class as
type of the object. Class as mechanism for user
defined types. Changing types through user
defined casting and automatic type coercion for
some primitive types.

7. Variables, Expressions
Variables as names for values; named constants
(final), expressions (arithmetic and logical) and
their evaluation (operators, associativity,
precedence). Assignment operation; difference
between left hand side and right hand side of
assignment.

8. Statements, Scope
Statements; conditional (if, if else, if else if,
switch case, ternary operator), looping (for,
while, do while, continue, break); grouping
statements in blocks, scope and visibility of
variables.

9. Methods
Methods (as abstractions for complex user
defined operations on objects), formal arguments
and actual arguments in methods; different
behaviour of primitive and object arguments.
Static method and variables. The this Operator.

Examples of algorithmic problem solving using
methods (number problems, finding roots of
algebraic equations etc.).

10. Arrays, Strings
Structured data types – arrays (single and multi-
dimensional), address calculations, strings.
Example algorithms that use structured data types
(e.g. searching, finding maximum/minimum,
sorting techniques, solving systems of linear
equations, substring, concatenation, length,
access to char in string, etc.).
Storing many data elements of the same type
requires structured data types – like arrays.
Access in arrays is constant time and does not
depend on the number of elements. Address
calculation (row major and column major),
Sorting techniques (bubble, selection, insertion).
Structured data types can be defined by classes –
String. Introduce the Java library String class
and the basic operations on strings (accessing
individual characters, various substring
operations, concatenation, replacement, index of
operations). The class StringBuffer should be
introduced for those applications that involve
heavy manipulation of strings.

11. Recursion
Concept of recursion, simple recursive methods
(e.g. factorial, GCD, binary search, conversion of
representations of numbers between different
bases).
Many problems can be solved very elegantly by
observing that the solution can be composed of
solutions to ‘smaller’ versions of the same
problem with the base version having a known
simple solution. Recursion can be initially
motivated by using recursive equations to define
certain methods. These definitions are fairly
obvious and are easy to understand. The
definitions can be directly converted to a
program. Emphasize that any recursion must
have a base case. Otherwise, the computation
can go into an infinite loop.
The tower of Hanoi is a very good example of
how recursion gives a very simple and elegant
solution where as non-recursive solutions are
quite complex.

8

ISC Examination Year 2027

SECTION C

Inheritance, Interface, Polymorphism, Data
structures, Computational complexity
12. Inheritance, Interfaces and Polymorphism

(a) Inheritance; super and derived classes;
member access in derived classes;
redefinition of variables and methods in
subclasses; abstract classes; class Object;
protected visibility. Subclass polymorphism
and dynamic binding.
Emphasize inheritance as a mechanism to
reuse a class by extending it. Inheritance
should not normally be used just to reuse
some methods defined in a class but only
when there is a genuine specialization (or
subclass) relationship between objects of the
super class and that of the derived class.

(b) Interfaces in Java; implementing interfaces
through a class; interfaces for user defined
implementation of behaviour.
Motivation for interface: often when creating
reusable classes some parts of the exact
implementation can only be provided by the
final end user. For example, in a class that
sorts records of different types the exact
comparison operation can only be provided
by the end user. Since only he/she knows
which field(s) will be used for doing the
comparison and whether sorting should be in
ascending or descending order be given by
the user of the class.
Emphasize the difference between the Java
language construct interface and the word
interface often used to describe the set of
method prototypes of a class.

13. Data structures
(a) Basic data structures (stack, queue, circular

queue, dequeue); implementation directly
through classes; definition through an
interface and multiple implementations by
implementing the interface. Conversion of
Infix to Prefix and Postfix notations.
Basic algorithms and programs using the
above data structures.
Data structures should be defined as abstract
data types with a well-defined interface (it is
instructive to define them using the Java
interface construct).

(b) Single linked list (Algorithm and
programming), binary trees, tree traversals
(Conceptual).
The following should be covered for each
data structure:
Linked List (single): insertion, deletion,
reversal, extracting an element or a sublist,
checking emptiness.
Binary trees: apart from the definition the
following concepts should be covered: root,
internal nodes, external nodes (leaves),
height (tree, node), depth (tree, node), level,
size, degree, siblings, sub tree,
completeness, balancing, traversals (pre,
post and in-order).

14. Complexity and Big O notation
Concrete computational complexity; concept of
input size; estimating complexity in terms of
methods; importance of dominant term;
constants, best, average and worst case.
Big O notation for computational complexity;
analysis of complexity of example algorithms
using the big O notation (e.g. Various searching
and sorting algorithms, algorithm for solution of
linear equations etc.).

PAPER II - PRACTICAL – 30 MARKS
This paper of three hours’ duration will be evaluated
by the Visiting Examiner appointed locally and
approved by CISCE.

The paper shall consist of three programming
problems from which a candidate has to attempt any
one. The practical consists of the two parts:
1. Planning Session
2. Examination Session
The total time to be spent on the Planning session and
the Examination session is three hours.
A maximum of 90 minutes is permitted for the
Planning session and 90 minutes for the Examination
session.
Candidates are to be permitted to proceed to the
Examination Session only after the 90 minutes of
the Planning Session are over.
Planning Session
The candidates will be required to prepare an
algorithm and a hand written Java program to solve
the problem.

9

ISC Examination Year 2027

Examination Session
The program handed in at the end of the Planning
session shall be returned to the candidates. The
candidates will be required to key-in and execute the
Java program on seen and unseen inputs individually
on the Computer and show execution to the Visiting
Examiner. A printout of the program listing including
output results should be attached to the answer script
containing the algorithm and handwritten program.
This should be returned to the examiner. The
program should be sufficiently documented so that
the algorithm, representation and development
process is clear from reading the program. Large
differences between the planned program and the
printout will result in loss of marks.
Teachers should maintain a record of all the
assignments done as part of the practical work
through the year and give it due credit at the time of
cumulative evaluation at the end of the year. Students
are expected to do a minimum of twenty-five
assignments for the year.

EVALUATION:
Marks (out of a total of 30) should be distributed as
given below:
Continuous Evaluation
Candidates will be required to submit a work file
containing the practical work related to programming
assignments done during the year.
Programming assignments done
throughout the year (Internal
Evaluation)

10 marks

Programming assignments done
throughout the year (Visiting Examiner)

5 marks

Terminal Evaluation
Solution to programming problem on
the computer

15 Marks

Marks should be given for choice of algorithm and
implementation strategy, documentation, correct
output on known inputs mentioned in the question
paper, correct output for unknown inputs available
only to the examiner.
NOTE:

Algorithm should be expressed clearly using any
standard scheme such as a pseudo code.

EQUIPMENT

There should be enough computers to provide for a
teaching schedule where at least three-fourths of the
time available is used for programming.

Schools should have equipment/platforms such that
all the software required for practical work runs
properly, i.e. it should run at acceptable speeds.

Since hardware and software evolve and change very
rapidly, the schools may have to upgrade them as
required.

Following are the recommended specifications as of
now:

The Facilities:

• A lecture cum demonstration room with a
MULTIMEDIA PROJECTOR/ an LCD and
O.H.P. attached to the computer.

• A white board with white board markers should
be available.

• A fully equipped Computer Laboratory that
allows one computer per student.

• Internet connection for accessing the World
Wide Web and email facility.

• The computers should have a minimum of
1 GB RAM and a P IV or higher processor. The
basic requirement is that it should run the
operating system and Java programming system
(Java compiler, Java runtime environment, Java
development environment) at acceptable speeds.

• Good Quality printers.

Software:

• Any suitable Operating System can be used.

• JDK 6 or later.

• Documentation for the JDK version being used.

• A suitable text editor. A development
environment with a debugger is preferred
(e.g. BlueJ, Eclipse, NetBeans). BlueJ is
recommended for its ease of use and simplicity.

10

ISC Examination Year 2027

SAMPLE TABLE FOR PRACTICAL WORK

S. No.

Unique
Identification

Number (Unique
ID) of the candidate

Assessment of
Practical File

Assessment of the Practical Examination
(To be evaluated by the Visiting Examiner only)

TOTAL MARKS
(Total Marks are to

be added and
entered by the

Visiting Examiner)

30 Marks

Internal
Evaluation
10 Marks

Visiting
Examiner
5 Marks

Algorithm Java Program with
internal

Documentation

Hard
Copy

(printout)

Output

3 Marks 7 Marks 2 Marks 3 Marks

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Name of the Visiting Examiner:_________________________________

Signature: _______________________________

Date:___________________________________

11

	ISC COMPUTER SCIENCE
	Inner pages
	Inner Page
	0. Inner page
	0.0 Council's Mission

	25. ISC Computer Science
	SECTION A
	SECTION B
	Continuous Evaluation
	Terminal Evaluation
	EQUIPMENT

	Unique Identification Number (Unique ID) of the candidate

